Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials

نویسندگان

  • J. Y. Woo
  • J. Lee
  • N. Kim
  • C. - S. Han
چکیده

This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4. Keywords—Quantum Dot, Nanocomposites, Photoluminescence, Light Emitting Diode

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS₂/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor...

متن کامل

Study on Scattering and Absorption Properties of Quantum-Dot-Converted Elements for Light-Emitting Diodes Using Finite-Difference Time-Domain Method

CdSe/ZnS quantum-dot-converted elements (QDCEs) are good candidates for substituting rare-earth phosphor-converted elements (PCEs) in white light-emitting diodes (LEDs); however, studies on their scattering and absorption properties are scarce, suppressing further increment in the optical and thermal performance of quantum-dot-converted LEDs. Therefore, we introduce the finite-difference time-d...

متن کامل

Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED's color rendering index (CRI) are still problematic. Here, we use flip-chip ...

متن کامل

Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes.

Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor adhesion of QDs to the resin. To overcome these problems, QD-layer-encapsulated...

متن کامل

Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers.

Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012